Емкостный датчик прикосновения. Датчики касания и звуковые

Электор 2008 №7-8

Работа ёмкостных датчиков прикосновения основана на электрической ёмкости человеческого тела. Например, когда близко к датчику подносят палец, то это создаёт ёмкость между датчиком и землёй, лежащую в диапазоне 30...100 пФ. Этот эффект может быть использован в датчиках приближения и переключателях, управляемых прикосновением.

Сенсорные ёмкостные датчики имеют очевидные преимущества по сравнению с другими датчиками (например, срабатывающими от наводок частотой 50/60 Гц или измеряющими сопротивление), но они более трудоёмки в реализации. Производители микросхем, такие как Microchip в прошлом создали специальные ИС для этих целей. Однако и сейчас можно создать надёжный ёмкостный детектор и/или переключатель, используя только небольшое число стандартных компонентов.

В этой схеме мы детектируем изменения ширины импульсов сигнала, возникающие при касании контакта. На рисунке 1 можно рассмотреть следующие узлы (слева направо):

Рис. 1. IC1 - 561ТЛ1

Генератор прямоугольных импульсов, выполненный на триггере Шмитта (ИС CD4093);
RC цепь с гасящим диодом, за которыми идёт триггер Шмитта/контактная пластина с изолирующим конденсатором ёмкостью 470 пФ;
- Интегрирующая RC цепь, преобразующая изменения ширины импульсов в напряжение. Это напряжение лежит в районе 2,9...3,2 вольт, когда до пластины дотрагиваются, и 2,6 вольт в другом случае.
- Компаратор LM 339 используется для сравнения напряжения в точке C с образцовым напряжением в точке D. Последнее составляет около 2,8 В и устанавливается делителем напряжения.

Как только произойдёт касание сенсорной пластины, выход схемы станет активным. Для пояснения работы схемы на рисунке 2 приведены осциллограммы сигналов в разных точках. Пунктирная линия показывает состояние при касании пластины датчика, сплошная линия - при отсутствии касания.

Рис. 2. Осциллограммы сигналов а разных точках.

Образцовое напряжение в точке D настраивается один раз с помощью делителя R4/R5 (изменяя значение R4). Величина этого напряжения сильно зависит от площади поверхности пластины-датчика (обычно несколько квадратных сантиметров). Большая площадь поверхности пластины увеличивает ёмкость и напряжение в точке C тем не менее будет больше, по сравнению с тем напряжением, когда пластины не касались. Образцовое напряжение в точке D должно быть установлено ближе к значению 3,4 В. Датчик прикосновения может так же работать с пластинами большой площади (например, можно использовать в качестве сенсора весь корпус).

Выходной сигнал может быть использован для включения различных нагрузок. Во многих случаях рекомендуется добавить на выход один триггер Шмитта, особенно если выход соединён с цифровым входом.

Вим Абуйс


Рис. 4. Расположение компонентов на печатной плате.


Рис. 5. Печатная плата.


Рис. 6. Печатная плата (зеркальный вид).

Ваш регион:

Самовывоз из офиса

Самовывоз из офиса в Москве

  • При оформлении до 15:00 в будний день заказ можно забрать после 17:00 в тот же день, иначе — на следующий будний день после 17:00. Мы позвоним и подтвердим готовность заказа.
  • Получить заказ можно с 10:00 до 21:00 без выходных после его готовности. Заказ будет ждать вас 3 рабочих дня. Если хотите продлить срок хранения, просто напишите или позвоните.
  • Запишите номер своего заказа перед визитом. Он необходим при получении.
  • Чтобы к нам пройти, предъявите на проходной паспорт, скажите, что вы в Амперку, и поднимитесь на лифте на 3-й этаж.
  • бесплатно
Доставка курьером по Москве

Доставка курьером по Москве

  • Доставляем на следующий день при заказе до 20:00, иначе — через день.
  • Курьеры работают с понедельника по субботу, с 10:00 до 22:00.
  • Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
  • 250 ₽
Доставка в пункт самовывоза

Доставка в пункт PickPoint

  • PickPoint .
  • Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
  • 240 ₽

Доставка курьером по Питеру

Доставка курьером по Санкт-Петербургу

  • Доставляем через день при заказе до 20:00, иначе — через два дня.
  • Курьеры работают с понедельника по субботу, с 11:00 до 22:00.
  • При согласовании заказа можно выбрать трёхчасовой интервал доставки (самое раннее — с 12:00 до 15:00).
  • Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
  • 350 ₽
Доставка в пункт самовывоза

Доставка в пункт PickPoint

  • Доставка в пункт самовывоза — современный, удобный и быстрый способ получить свой заказ без звонков и ловли курьеров.
  • Пункт самовывоза — это киоск с человеком или массив железных ящичков. Их ставят в супермаркетах, офисных центрах и других популярных местах. Ваш заказ окажется в том пункте, который выберите.
  • Ближайший к себе пункт вы можете найти на карте PickPoint .
  • Срок доставки — от 1 до 8 дней в зависимости от города. Например, в Москве это 1-2 дня; в Петербурге — 2—3 дня.
  • Когда заказ прибудет в пункт выдачи, вы получите SMS с кодом для его получения.
  • В любое удобное время в течение трёх дней вы можете прийти в пункт и с помощью кода из SMS получить заказ.
  • Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
  • Стоимость доставки — от 240 руб в зависимости от города и габаритов заказа. Она рассчитывается автоматически во время оформления заказа.
  • 240 ₽

Доставка в пункт самовывоза

Доставка в пункт PickPoint

  • Доставка в пункт самовывоза — современный, удобный и быстрый способ получить свой заказ без звонков и ловли курьеров.
  • Пункт самовывоза — это киоск с человеком или массив железных ящичков. Их ставят в супермаркетах, офисных центрах и других популярных местах. Ваш заказ окажется в том пункте, который выберите.
  • Ближайший к себе пункт вы можете найти на карте PickPoint .
  • Срок доставки — от 1 до 8 дней в зависимости от города. Например, в Москве это 1-2 дня; в Петербурге — 2—3 дня.
  • Когда заказ прибудет в пункт выдачи, вы получите SMS с кодом для его получения.
  • В любое удобное время в течение трёх дней вы можете прийти в пункт и с помощью кода из SMS получить заказ.
  • Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
  • Стоимость доставки — от 240 руб в зависимости от города и габаритов заказа. Она рассчитывается автоматически во время оформления заказа.
Посылка Почтой России

Почта России

  • Доставка осуществляется до ближайшего почтового отделения в любом населённом пункте России .
  • Тариф и сроки доставки диктует «Почта России». В среднем, время ожидания составляет 2 недели.
  • Мы передаём заказ Почте России в течение двух рабочих дней.
  • Оплатить заказ можно наличными при получении (наложенный платёж) или же онлайн при оформлении заказа.
  • Стоимость рассчитывается автоматически во время заказа и в среднем должна составить около 400 рублей.
Доставка службой EMS

Доставка службой EMS

  • Служба «EMS Почта России» работает быстрее и надёжнее обычной почты и доставляет до двери покупателя.
  • Тариф и сроки доставки диктует служба EMS. В среднем по России время ожидания составляет 4-5 дней.
  • Мы передаём заказ в EMS в течение двух рабочих дней.
  • Оплатить заказ можно только онлайн при оформлении заказа.
  • Стоимость рассчитывается автоматически во время оформления заказа и в среднем должна составить 400-800 рублей для России и 1500-2000 рублей для стран СНГ.

Помимо онлайн-магазина, товар также представлен:

Офис-магазин, м. Таганская

Офис-магазин, м. Таганская

Товары из офиса нельзя заказать через интернет или забронировать. Можно только прийти, схватить и бежать. Доступное количество актуально на момент загрузки страницы.

Офис находится в 5 минутах ходьбы от м. Таганская, по адресу Большой Дровяной переулок, дом 6 .

Скоро Магазин-мастерская, м. Лиговский пр-т

Магазин-мастерская, м. Лиговский пр-т

Товары из магазина-мастерской нельзя заказать через интернет или забронировать. Можно только прийти, схватить и бежать. Доступное количество актуально на момент загрузки страницы.

Магазин-мастерская находится в трёх минутах пешком от метро Лиговский Проспект, на территории пространства «Лофт Проект Этажи», по адресу Лиговский проспект 74Д .

Ёмкостный датчик прикосновения работает как обычная кнопка, но в нём нет подвижных частей. Кнопка почувствует «нажатие» сквозь корпус устройства и сработает как бесконтактный концевик в проектах домашней автоматизации.

Сенсор работает через неметаллические материалы - пластмассу, картон, фанеру или стекло. Эту особенность можно использовать для создания скрытых или защищённых элементов управления.

Поместите модуль в герметичный корпус или спрячьте под лицевую панель устройства - кнопка почуствует приближение пальца даже через четырёхмиллиметровый слой диэлектрика.

Использование в качестве «кнопки» - не единственный вариант использования ёмкостных датчиков. Они отлично подойдут для контроля уровня воды в пластиковой бочке или стеклянном аквариуме.

Что на борту

Система определения прикосновения состоит из чувствительного элемента, блока измерения ёмкости датчика и логической схемы, реагирующей на изменение ёмкости при приближении объекта.

В качестве чувствительного элемента используется токопроводящий контур на лицевой части модуля.

Логика построена на базе микросхемы AT42QT1010 . Она отвечает за автоматическую калибровку датчика. Калибровка занимает примерно полсекунды и выполняется сразу после появления питания на модуле. Кроме того, микросхема фильтрует значения, компенсирует дрейф ёмкостного датчика и корректирует работу устройства при изменении температуры и влажности окружающей среды.

При каждом срабатывании сенсора загорается яркий красный светодиод. Это поможет при отладке проекта и пригодится для создания интерактивных панелей управления.

Подключение

Сенсорный модуль по своей сути аналогичен цифровой кнопке . Пока кнопка нажата, датчик отдаёт логическую единицу; когда кнопка не нажата - логический ноль.

В простом варианте модуль подключается к управляющей электронике как простая кнопка - одним .

Для этого используется левая группа контактов:

  • Контакт S - сигнальный пин, подключаемый к цифровому входу контроллера.
  • Контакт V - питание. Подключается к линии питания 3,3-5 В.
  • Контакт G - подключается к земле.

В правой группе контактов используется только один пин - M. Он переключает режимы работы модуля. Две оставшиеся ноги используются для надёжной фиксации модуля на Troyka Slot Shield .

Переключение режима работы

По умолчанию модуль работает в режиме пониженного энергопотребления. Опрос датчика проводится раз в 80 миллисекунд. Это существенно экономит энергию аккумуляторов.

Если вам требуется увеличить отзывчивость интерфейса, подключите пин М к контроллеру и подайте на него логическую единицу. Модуль переключится в режим высокоскоростной обработки данных, интервал опроса сенсора уменьшится до 10 миллисекунд.

Комплектация

  • 1× Плата-модуль

Характеристики

  • Напряжение питания: 3,3-5 В
  • Контроллер сенсора: AT42QT1010
  • Интерфейс кнопки: цифровой, бинарный
  • Габариты: 25×25 мм

Тач-сенсоры (датчики касания) бывают разных принципов действия, например резистивный (проводящие пленки), оптический (инфракрасный), акустический (SAW), емкостной и т.д. Данный проект является экспериментом с емкостным датчиком касания. Этот вид датчика хорошо известен как указывающее устройство, используемое в планшетных ПК и смартфонах.

Принцип емкостного датчика касания

Емкостный датчик касания обнаруживает изменение емкости, происходящее на электроде от закрытия проводящим предметом, например пальцем. Есть несколько методов измерения емкости. В этом проекте используется метод интеграции, который используется в измерителе емкости. Изменение емкости Cx довольно небольшое, около 1пФ до 10пФ, но оно будет легко обнаружено, потому что у измерителя емкости разрешение измерения составляет 20пФ. Также, объекты, которые будут обнаруживаться должны быть заземлены, чтобы создать Cx схему согласно с принципом действия. Однако она хорошо работает, даже если человеческое тело изолировано от земли. Это может быть по нижеследующей причине.

Аппаратная часть

Программное обеспечение

Во-первых, откалибруйте каждую точку (получите эталонное время связи с Cs), а затем запустите сканирование в постоянном периоде. Когда время интеграции увеличился и превысит порог, он решит “обнаружено”. Гистерезису требуется порог, или выход не будет стабильным при полу прикосновении. Время измерения для каждой точки равно времени интегрирования, так что это может быть сделано очень быстро.

Измеритель емкости измеряет время интеграции с разрешением один такт (100 нс) с аналоговым компаратором и функцией входной фиксации. Однако эта функция не доступна на всех портах ввода/вывода. Для реализации датчика касания на любом порту ввода/вывода, время интеграции измеряется опросом программным обеспечением, и разрешение становится 3 такта (375ns). В нормальном состоянии число отчета времени около 80, и это достаточно для сенсорных кнопок.

Заключение

В результате, я могу подтвердить, что емкостный сенсор может быть с легкостью реализован на обычном микроконтроллере. Пластиковая накладка может быть до 1 мм в толщину (в зависимости от диэлектрической проницаемости) для хорошей работы. Когда ATtiny2313 используется для модуля датчиков касания, она может иметь 15 точек прикосновения. Программа управления, используемая в этом проекте экспериментальна, и не проверялась в грязных условиях, таких как шумы и помехи, так что для реального использования может потребоваться любой анти-шумовой алгоритм.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
U? МК AVR 8-бит

ATtiny2313-20PU

1 В блокнот
R1-R8 Резистор

1 МОм

8 В блокнот
R9-R16 Резистор R9-R16 8 В блокнот
C1 Электролитический конденсатор 100 мкФ 1 В блокнот
C2 Конденсатор 100 нФ 1 В блокнот
D1-D8 Светодиод 8

Для некоторых электротехнических устройств имеется необходимость в сенсорном включении, то есть начало или конец работы должно происходить при простом касании пальца руки к сенсорному контакту. Применить это можно в схемах электронных замков, сигнализаций, обычной техники, что упрощает её включение и выключение (всего лишь нужно прикоснуться).

В этой статье предлагаю достаточно простую электронную схему сенсорного включателя, которую может собрать практически любой человек. Состоит эта схема всего из нескольких электронных компонентов, главными из которых являются биполярные транзисторы, выполняющие роль усилителей сигнала. Ко входу (базе) первого транзистора подсоединяется сам провод сенсора (к которому нужно прикасаться). С выхода транзистора выходит усиленный в сотни раз сигнал, что подаётся на следующий элемент. Второй транзистор усиливает ещё больше уже до этого усиленный сигнал, ну и то же самое делает третий каскад схемы. В итоге мы из крайне малого сигнала, идущего от сенсора, получаем ток, что может зажечь светодиод (либо включить реле, что будет управлять тем или иным устройством).

Напомню, что биполярный транзистор представляет собой полупроводниковый элемент, имеющий три вывода (эмиттер, коллектор и база). Он способен усиливать электрический сигнал в 10-1000 раз. При подаче на управляющий вывод небольшого сигнала (где-то от 0,6 до 0,7 вольт) на выходе мы можем получить уже электрический ток и/или напряжение гораздо большей величины.

База является управляющим электродом, относительно эмиттера. То есть, от источника питания подается на базу (через ограничивающий резистор, создающий некое смещение) и коллектор определенная величина напряжения. При напряжении между базой и эмиттером до 0,6 вольт транзистор ещё будет закрыт (не будет пропускать через себя ток относительно эмиттера и коллектора). Повышая напряжение между базой и эмиттером уже от 0,6 и где-то до 0,7 вольт мы постепенно открывает транзистор от полностью закрытого состояния в полностью открытое. Следовательно, транзистор выполняет роль переменного резистора, который управляется небольшими токами и может изменять своё сопротивления от бесконечно большого до практически нулевого (всё же оно есть, хоть и весьма малое).

Резисторы в схеме простого сенсорного включателя, стоящие в цепи коллекторов, выполняют роль ограничителей тока. Их номиналы 1 мегаом, 1 килоом и 220 ом. Можно ставить маленькой мощности, небольшие по размеру (токи в схеме достаточно малые). В данной электрической схеме применены биполярные транзисторы типа КТ315 (подойдут с любым буквенным индексом). Эти транзисторы старотипные, найти их можно где угодно, и стоят они копейки (если их покупать). Заменить их можно на КТ3102 или любые другие, с похожими характеристиками. Эти транзисторы имеют проводимость n-p-n (новичкам стоит это учесть). Можно поставить в схему транзисторы и обратной проводимости (p-n-p) серии КТ361 или КТ3107, но тогда нужно будет поменять полярность на питании (на плюс подключать минус и наоборот).

Хочу заметить, что данная электрическая схема сенсора является не фиксированной, то есть выходное устройство будет срабатывать и работать только тогда, когда вы касаетесь входного сенсора. Как только вы перестанете касаться сенсора, то и выходное устройство также выключится.

Изначально в схему простого сенсорного включателя я поставил на выход обычный светодиод, который просто зажигался при касании сенсора. Если вместо светодиода поставить небольшое реле, то можно уже на выходе схемы иметь переключатель, что можно подключить к различным электрическим устройствам (звонку, лампочки, двигателю и т.д.). Параллельно катушки реле нужно будет припаять электролитический конденсатор небольшой ёмкости (где-то от 100 до 1000 микрофарад, и напряжением не менее чем у источника питания). А также подключить диод (обратное включение), что позволит исключить влияние на саму схему напряжения самоиндукции, возникающей на катушки реле. Диод подойдет любой!

P.S. Учтите, что светодиод имеет полярность! Если вы поставите его неправильно, то светиться он не будет. В случае использования реле учитывайте выходной ток транзистора. То есть, КТ315 может иметь на своём выходе силу тока не более 100 миллиампер. Следовательно, если поставить большую релюшку, у которой катушка потребляет большие токи, то транзистор может выйти из строя. Нужно ставить реле с соответствующим током на катушке или ставить более мощный биполярный транзистор на выходе схемы.

Датчик прикосновения TTP223B (Сенсорная кнопка) используется для коммутации электрических цепей (включатель/выключатель), является отличной заменой традиционным механическим кнопкам (ключам). Отличается повышенной надежностью по причине отсутствия движущихся частей и низким энергопотреблением.

Для использования сенсорной кнопки TTP223B необходимо подключить питание и Arduino контроллер, либо другое микропроцессорное управляющее устройство. На плате находится светодиод, обозначенный "D", который загорается, когда на модуль подается питание. На плате модуля предусмотрено четыре отверстия для закрепления на плоской поверхности.
Сенсорная площадка работает по емкостной технологии. Срабатывание модуля на коммутацию происходит от прикосновения пальцем к сенсорному датчику. В состоянии покоя - на выходе модуля низкий уровень напряжения, при касании сенсора - появляется высокий уровень напряжения. После 12 секунд бездействия модуль переходит в режим пониженного энергопотребления.
Датчик прикосновения TTP223B имеет один 3-х контактный разъем.

Обозначение контактов

SIG (выходной цифровой сигнал);
VCC (напряжение питания);
GND (общий контакт).
Питание модуля осуществляется либо от Arduino, а также другого микропроцессорного управляющего устройства, либо от внешнего источника питания (блока питания). Напряжение питания модуля 2 – 5,5 В.

Характеристики

модуль собран на микросхеме TTP223B;
сенсор работает по емкостной технологии;
светодиодная индикация питания;
напряжение питания модуля: 2 – 5,5 В;
чувствительность: 0 – 50 пФ;
время отклика (режим пониженного энергопотребления): 220 мс;
время отклика (активный режим): 60 мс;
размеры (Д х Ш х В): 24 х 24 7,5 мм;
вес: 3 г.