Измерение параметров катушек индуктивности. Приставка для измерения индуктивности и ее применение в практике радиолюбителя

Содержимое:

"Индуктивность" означает либо взаимную индукцию, когда напряжение в электрической цепи возникает в результате изменения силы тока в другой цепи, либо самоиндукцию, при которой напряжение в цепи создается в результате изменения тока в этой же цепи. В обоих случаях индуктивность определяется отношением напряжения к силе тока, а единицей ее измерения является генри, равный 1 вольт в секунду, поделенный на ампер. Поскольку генри является большой величиной, индуктивность обычно измеряют в миллигенри (мГн, тысячная часть генри) или в микрогенри (мкГн, миллионная часть генри). Ниже описаны несколько методов измерения индуктивности катушки.

Шаги

1 Измерение индуктивности по зависимости напряжение-ток

  1. 1 Подключите к катушке индуктивности источник импульсного напряжения. При этом полный импульс должен составлять не более 50 процентов.
  2. 2 Включите монитор на регистрацию тока. Необходимо подключить в цепь токочувствительный резистор, или же использовать амперметр. И первый и второй следует соединить с осциллографом.
  3. 3 Зафиксируйте максимальное значение тока и время между двумя импульсами напряжения в сети. Сила тока измеряется в амперах, время - в микросекундах.
  4. 4 Умножьте напряжение, прикладываемое к цепи за один импульс, на длительность импульса. Например, если напряжение 50 вольт сообщается цепи в течение 5 микросекунд, в результате получим 50, умноженные на 5, т.е. 250 вольт в микросекунду.
  5. 5 Поделите произведение напряжения и длительности импульса на максимальную силу тока. Продолжая приведенный выше пример, если максимальный ток составил 5 ампер, индуктивность будет равна 250 вольт в секунду, поделенным на 5 ампер, или же 50 микрогенри.
    • Несмотря на простоту расчетов, этот метод измерения индуктивности требует более сложного оборудования по сравнению с остальными.

2 Измерение индуктивности с помощью сопротивления

  1. 1 Подключите последовательно к катушке индуктивности резистор, сопротивление которого известно. Величина сопротивления должна быть известна с точностью не ниже одного процента. При последовательном соединении электрический ток проходит как через катушку, так и через сопротивление; катушка и резистор должны иметь электрический контакт лишь в одной точке.
  2. 2 Пропустите ток через получившуюся цепь. Это делается с помощью функционального преобразователя, моделирующего реальные токи через катушку и резистор.
  3. 3 Зафиксируйте значения напряжения на входе и в месте соединения катушки с сопротивлением. Отрегулируйте ток так, чтобы напряжение в месте соединения составило половину входного напряжения цепи.
  4. 4 Определите частоту тока. Частота измеряется в килогерцах.
  5. 5 Вычислите индуктивность. В отличие от предыдущего метода, настоящий способ требует меньше оборудования, но более сложные вычисления. Индуктивность рассчитывается следующим образом:
    • Умножьте сопротивление резистора на корень квадратный из 3. К примеру, если резистор имеет сопротивление 100 ом, умножение на 1,73 (корень квадратный из 3 с точностью до второго знака после запятой) даст вам 173.
    • Поделите результат произведения на на частоту, умноженную на 2 и число пи. Если частота равна 20 килогерц, делить надо на 125,6; 173, поделенное на 125,6 даст вам, с точностью до второго знака после запятой, 1,38 миллигенри.
    • мГн = (R x 1,73) / (6,28 x (Гц / 1000))
    • Например: дано R = 100 и Гц = 20.000
    • мГн = (100 X 1,73) / (6,28 x (20.000 / 1000)
    • мГн = 173 / (6,28 x 20)
    • мГн = 173 / 125,6
    • мГн = 1,38

3 Измерение индуктивности с помощью конденсатора и сопротивления

  1. 1 Подключите катушку индуктивности параллельно с конденсатором, емкость которого известна. Параллельное подключение катушки и конденсатора приводит к созданию электрического колебательного контура. Используйте конденсатор, емкость которого известна с точностью не ниже 10 процентов.
  2. 2 Подключите получившийся контур последовательно к сопротивлению.
  3. 3 Пропустите через цепь ток. Это, как и в предыдущем случае, делается при помощи функционального преобразователя.
  4. 4 Подсоедините клеммы осциллографа к полученной цепи. После этого измените силу тока от минимальных до максимальных значений.
  5. 5 Найдите на осциллографе точку резонанса. В этой точке ток максимален.
  6. 6 Поделите 1 на произведение квадрата энергии на выходе и емкости конденсатора. Энергия 2 джоуля и емкость 1 фарад дадут в знаменателе 2 в квадрате, т.е. 4; 1, поделенное на 4 равно 0,25 генри, или 250 миллигенри.
  • При последовательном соединении индукторов их общая индуктивность равна сумме индуктивностей каждого из индукторов. Если же они соединены параллельно, обратная общая индуктивность (т.е. 1 поделить на L) равна сумме обратных индуктивностей.
  • Индукторы могут представлять собой проволочные катушки, кольцевые сердечники, или быть сделаны из тонкой фольги. Чем больше витков имеет катушка на единицу длины, тем выше ее суммарное поперечное сечение и, соответственно, индуктивность. Индуктивность длинных катушек ниже индуктивности более коротких.

Предупреждения

  • Индуктивность можно определить непосредственно с помощью измерителя индуктивности, но такие приборы не очень распространены, и большинство из них предназначены для измерения слабых токов.

Что вам понадобится

  • Функциональный преобразователь
  • Осциллограф с клеммами
  • Резистор или конденсатор

Наиболее простой и доступный для радиолюбителей способ измерения индуктивности низкочастотной катушки (дросселя низкой частоты, обмотки трансформатора со стальным сердечником и т. п.) заключается в следующем:

1) собирают схему, изображенную на рис. ; в качестве прибора, измеряющего напряжения на переменном резисторе R и катушке L х используют тестер или отдельный вольтметр переменного тока; максимальное значение сопротивления резистора мощностью рассеяния 0,25-1-0,5 Вт выбирают в пределах 100-30000 Ом (в зависимости от ожидаемой величины).

2.32. Измерение индуктивностей низкочастотных катушек

2) устанавливают с помощью автотрансформатора АТ напряжение на уровне 10 В и замечают показание U 1 вольтметра, то есть падение напряжения на исследуемой катушке;

3) переводят ползунок переключателя из положения 1-3 в положение 1-2 , присоединяя таким образом вольтметр параллельно резистору, и подбирают такое значение сопротивления R = R 2 , при котором падение напряжения на резисторе также равно U 1 .

4) вычисляют индуктивность катушки по формуле:

L" x = 0,00318 √ RR 2 Гн, (32)

где R 1 и R 2 - сопротивления резистора (Ом) при нахождении ползунка переключателя в положениях 1-3 и 1-2.

При отсутствии переменного резистора индуктивность катушки измеряют с помощью постоянного резистора. Схема и процесс измерения остаются прежними, формула же для подсчета L х - дополняется множителем U 1 /U 2 , то есть приобретает вид:

L"" x = 0,00318 R(U 1 /U 2) Гн, (33)

где R - сопротивление резистора, Ом,

U 1 и U 2 - показания вольтметра в положениях 1-3 и 1-2 ползунка переключателя.

В большинстве случаев индуктивные сопротивления обмоток намного превышают их активные сопротивления, поэтому приведенные выше формулы дают достаточно точные значения индуктивности.

Однако если число витков катушки мало, а сопротивление постоянному (или переменному) току велико (несколько десятков или сотен Ом), то L" x и L"" x вычисляют по другим, более точным формулам, а именно:

где R - сопротивление резистора при нахождении ползунка переключателя в положении 1-2; U - напряжение на последовательно соединенных R и L x ; U 2 - напряжение на резисторе равное напряжению U 1 на катушке L х ;

L x " = 0,00318 R 0 / tg α ,

где R - активное сопротивление обмотки;

α - угол, образованный стороной ВС треугольника ABC () и перпендикуляром, опущенным из точки В на продолжение стороны ЛС.

Рис. 2.40 . Треугольник напряжений, определяющий угол α

Тангенс угла α находят так. Откладывают на произвольной прямой MN () отрезок АС , пропорциональный напряжению U 2 на резисторе R . Затем проводят из точек А и С , как из центров, радиусами, пропорциональными напряжению U источника питания и напряжению U 1 на обмотке, две дуги. Соединяют точку В пересечения этих дуг с точкой С и опускают из точки В перпендикуляр BD на прямую MN . В заключение удлиняют высоту BD треугольника ABC до 100 мм (отрезок DK ) и проводят через точку К прямую KP , параллельную стороне ВС треугольника ABC . Если принять отрезок DK за единицу, то отсекаемый при этом на прямой MN отрезок PD и будет численно равен тангенсу угла α .

В тех случаях, когда сопротивление катушки постоянному току превышает ее индуктивное сопротивление, измерение L x проводят при другой, более высокой, частоте (например, 400 или 800 Гц). Форма кривой напряжения на выходе источника напряжения этой повышенной (звуковой) частоты должна быть синусоидальной.

Рис. 2.41. К вопросу нахождения тангенса угла α

При переходе к частоте, не равной 50 Гц, в формулы (32) ~ (35) вводят вместо коэффициента 0,00318 множитель 1/2π f источника питания схемы, где f - частота источника питания схемы.

Приборы непосредственной оценки и сравнения

К измерительным приборам непосредственной оценки значения измеряемой емкости относятся микрофарадметры , действие которых базируется на зависимости тока или напряжения в цепи переменного тока от значения включенной в нее . Значение емкости определяют по шкале стрелочного измерителя.

Более широко для измерения и индуктивностей применяют уравновешенные мосты переменного тока , позволяющие получить малую погрешность измерения (до 1 %). Питание моста осуществляется от генераторов, работающих на фиксированной частоте 400-1000 Гц. В качестве индикаторов применяют выпрямительные или электронные милливольтметры, а также осциллографические индикаторы.

Измерение производят балансированием моста в результате попеременной подстройки двух его плеч. Отсчет показаний берется по лимбам рукояток тех плеч, которыми сбалансирован мост.

В качестве примера рассмотрим измерительные мосты, являющиеся основой измерителя индуктивности ЕЗ-3 (рис. 1) и измерителя емкости Е8-3 (рис. 2).

Рис. 1. Схема моста для измерения индуктивности

Рис. 2. Схема моста для измерения емкости с малыми (а) и большими (б) потерями

При балансе моста (рис. 1) индуктивность катушки и ее добротность определяют по формулам Lx = R1R2C2; Qx = wR1C1.

При балансе мостов (рис. 2) измеряемая емкость и сопротивление потерь определяют по формулам

Измерение емкости и индуктивности методом амперметра-вольметра

Для измерения малых емкостей (не более 0,01 - 0,05 мкФ) и высокочастотных катушек индуктивности в диапазоне их рабочих частот широко используют резонансные методы Резонансная схема обычно включает в себя генератор высокой частоты, индуктивно или через емкость связанный с измерительным LС-контуром. В качестве индикаторов резонанса применяют чувствительные высокочастотные приборы, реагирующие на ток или напряжение.

Методом амперметра-вольтметра измеряют сравнительно большие емкости и индуктивности при питании измерительной схемы от источника низкой частоты 50 - 1000 Гц.

Для измерения можно воспользоваться схемами рис. 3.

Рисунок 3. Схемы измерения больших (а) и малых (б) сопротивлений переменному току

По показаниям приборов полное сопротивление

где

из этих выражений можно определить

Когда можно пренебречь активными потерями в конденсаторе или катушке индуктивности, используют схему рис. 4. В этом случае


Рис. 4. Схемы измерения больших (а) и малых (б) сопротивлений методом амперметра - вольтметра

Измерение взаимной индуктивности двух катушек

Инструкция

Приобретите LC-метр. В большинстве случаев, они на обычные мультиметры. Существуют также мультиметры с функцией измерения - такой прибор вам тоже подойдет. Любой из этих приборов можно приобрести в специализированных магазинах, торгующих электронными компонентами.

Обесточьте плату, на которой находится катушка. При необходимости, разрядите конденсаторы на плате. Выпаяйте катушку, которой требуется измерить, из платы (если этого не сделать, в измерение будет внесена заметная погрешность), а затем подключите к входным гнездам прибора (к каким именно, указано в его инструкции). Переключите прибор на точный предел, обычно обозначенный как "2 mH". Если индуктивность меньше двух миллигенри, то она будет определена и показана на индикаторе, после чего измерение можно считать законченным. Если же она больше этой величины, прибор покажет перегрузку - в старшем разряде появится единица, а в остальных - пробелы.

В случае если измеритель показал перегрузку, переключите прибор на следующий, более грубый предел - "20 mH". Обратите внимание на то, что десятичная точка на индикаторе переместилась - изменился масштаб. Если измерение и в этот раз не увенчалось успехом, продолжайте переключать пределы в сторону более грубых до тех пор, пока перегрузка не исчезнет. После этого прочитайте результат. Посмотрев затем на переключатель, вы узнаете, в каких единицах этот результат выражен: в генри или в миллигенри.

Отключите катушку от входных гнезд прибора, после чего впаяйте обратно в плату.

Если прибор показывает нуль даже на самом точном пределе, то катушка либо имеет очень малую индуктивность, либо содержит короткозамкнутые витки. Если же даже на самом грубом пределе индицируется перегрузка, катушка либо оборвана, либо имеет слишком большую индуктивность, на измерение которой прибор не рассчитан.

Видео по теме

Обратите внимание

Никогда не подключайте LC-метр к схеме, находящейся под напряжением.

Полезный совет

Некоторые LC-метры имеют специальную ручку для регулировки. Прочитайте в инструкции к прибору, как ей пользоваться. Без регулировки показания прибора будут неточными.

Катушка индуктивности представляет собой свернутый в спираль проводник, запасающий магнитную энергию в виде магнитного поля. Без этого элемента невозможно построить ни радиопередатчик, ни радиоприемник, на аппаратуру проводной связи. И телевизор, к которому многие из нас так привыкли, без катушки индуктивности немыслим.

Вам понадобится

  • Провода различного сечения, бумага, клей, пластмассовый цилиндр, нож, ножницы

Инструкция

По этим данным рассчитайте значение . Для этого значение напряжения поделите последовательно на 2, число 3.14, значения частоты тока и силы тока. Результатом будет значение индуктивности для данной катушки в Генри (Гн). Важное замечание: катушку присоединяйте только к источнику переменного тока. Активное сопротивление проводника, используемого в катушке должно быть пренебрежимо мало.

Измерение индуктивности соленоида.
Для измерения индуктивности соленоида возьмите линейку или другой инструмент для определения длин и расстояний, и определите длину и диаметр соленоида в метрах. После этого посчитайте количество его витков.

Затем найдите индуктивность соленоида. Для этого, возведите количество его витков во вторую степень, полученный результат умножьте на 3.14, диаметр во второй степени и поделите результат на 4. Полученное число поделите на длину соленоида и умножьте на 0,0000012566 (1,2566*10-6). Это и будет значение индуктивности соленоида.

Если есть такая возможность, для определения индуктивности данного проводника используйте специальный прибор. В его основе лежит схема, именуемая мост переменного тока.

Катушка индуктивности способна накапливать магнитную энергию при протекании электрического тока. Основным параметром катушки является ее индуктивность. Индуктивность измеряется в Генри (Гн) и обозначается буквой L.

Вам понадобится

  • Параметры катушки индуктивности

Инструкция

Индуктивность короткого проводника определяется по : L = 2l(ln(4l/d)-1)*(10^-3), где l - длина провода в , а d - диаметр провода в сантиметрах. Если провод намотан на каркас, то образуется катушка . Магнитный поток концентрируется, и, в результате, величина индуктивности возрастает.

Индуктивность катушки пропорциональна линейным размерам катушки, магнитной проницаемости сердечника и квадрату числа витков намотки. Индуктивность катушки, намотанной на тороидальном сердечнике, равна: L = μ0*μr*s*(N^2)/l. В этой формуле μ0 - магнитная постоянная, μr - относительная магнитная проницаемость материала сердечника, зависящая от частоты), s -

Сегодня на рынке продается множество приборов, измеряющих емкость и индуктивность, только стоят они в несколько раз дороже китайского мультиметра. Тот кому каждый день необходимо производить замеры емкости или индуктивности непременно купит себе такой, а что делать если такая необходимость возникает крайне редко? В таком случае можно применить описанный ниже метод.
Известно, что если на интегрирующую RC цепочку подать прямоугольный импульс, то форма импульса изменится и будет такой как на картинке.

Время, за которое напряжение на конденсаторе достигнет 63% от подаваемого, называется тау. Формула по которой считается тау изображена на рисунке.


В таком случае говорят, что интегрирующая цепочка сгладила фронты прямоугольного импульса.
Так же известно, что если на параллельный LC контур подать прямоугольный импульс, в контуре возникнут затухающие колебания, частота, которых равна резонансной частоте контура. Резонансная частота контура находится по формуле Томсона, из которой можно выразить индуктивность.


Подключается контур через конденсатор малой емкости, чем меньше тем лучше, который ограничивает ток, поступающий в контур. Давайте рассмотрим, как конденсатор малой емкости ограничивает ток.
Для того, чтобы конденсатор зарядился до номинального напряжения ему надо передать определенный заряд. Чем меньше емкость конденсатора, тем меньший заряд ему необходим, чтобы напряжение на обкладках достигло напряжения импульса. Когда мы подаем импульс, конденсатор, малой емкости, очень быстро заряжается и напряжение на обкладках конденсатора становится равно напряжению импульса. Так как напряжение конденсатора и импульса равны, нет разности потенциалов, следовательно ток не течет. При чем ток может перестать течь через конденсатор спустя некоторое время от начала импульса, а оставшуюся часть времени импульса энергия к контуру подводится не будет.
Для проведения эксперимента нам потребуется генератор импульсов прямоугольной формы с частотой 5-6KHz.
Можно собрать его по схеме на рисунке ниже или воспользоваться генератором сигналов, я делал обоими способами.


Теперь, вспомнив, как ведет себя при подаче прямоугольного импульса интегрирующая RC цепочка и параллельный LC контур, соберем простую схему изображенную на картинке.


Сначала измерим емкость конденсатора, место его подключения на схеме обозначено С?. Резистора 1K под рукой не нашлось, поэтому я использовал 100 Ohm и вместо конденсатора 10pF использовал конденсатор 22pF. В принципе номинал резистора можно выбрать любой, но не ниже 50 Ohm, иначе сильно просядет напряжение генератора.
В данном эксперименте я буду использовать генератор сигналов, выходное сопротивление которого равно 50 Ohm. Включим генератор и установим амплитуду 4V, если собирать генератор по схеме то регулировать амплитуду можно, изменяя напряжение питания.


Подключим щупы осциллографа параллельно конденсатору. На осциллографе должна появиться следующая картинка.


Немного увеличим её.


Измерим время, за которое напряжение на конденсаторе достигает 63% от напряжения импульса или 2,52V.


Оно равно 14,8uS. Так как сопротивление генератора включено последовательно с нашей цепочкой его необходимо учесть, в итоге активное сопротивление равно 150 Ohm. Разделим значение тау(14,8 uS) на сопротивления(150 Om) и найдем емкость, она равна 98,7 nF . На конденсаторе написано, что емкость равна 100nF.

Теперь измерим индуктивность. На схеме место подключения катушки индуктивности обозначено L?. Подключаем катушку, включаем генератор и подключаем щуп осциллографа параллельно контуру. На осциллографе увидим такую картинку.


Увеличиваем развертку.


Видим, что период колебаний равен 260KHz.
Ёмкость щупа равна 100pF и в данном случае её необходимо учесть потому, что она составляет 10% от емкости контура. Суммарная емкость контура равна 1,1nF. Теперь подставим в форму для нахождения индуктивности, емкость конденсатора(1,1nF) и частоту колебаний(260KHz). Для таких вычислений я пользуюсь программой Coil32.


Получилось 340,6uH, судя по маркировке индуктивность равна 347uH и это отличный результат. Этот способ позволяет измерять индуктивность с погрешность до 10% .
Теперь мы знаем как измерить емкость конденсатора и индуктивность катушки, используя осциллограф.