Беспроводное зарядное устройство для сотового телефона. Распиновка USB разъемов для зарядки телефонов Все схемы зарядных устройств для телефонов

Этот девайс был задуман давно и неоднократно был опробован, все, что представлено ниже, является авторской разработкой. Не смотря на очень простую схему, устройство работает очень стабильно. Сам аппарат представляет из себя зарядное устройство для мобильного телефона без использования проводов.

Как же работает все это?
На данном сайте были опубликованы этого устройства. Первая версия оказалась не очень эффективной, затем были придуманы другие версии. Этот вариант оказался самым экономичным. Устройство позволяет зарядить телефон, если последний находится от приемника на расстоянии не более 3 - 4 см. Основа первого устройства - высокоэффективный ШИМ контроллер, который может генерировать прямоугольные импульсы с частотой до 1 МГц, но из-за больших потерь идея оказалось не очень хорошей, хотя это устройство позволяло зарядить мобильные устройства на расстоянии до 50 см от приемника.
После некоторых неудачных попыток создании такого девайса, на помощь пришел упрощенный блокинг-генератор, который с успехом использовался мною в электрошоковых устройствах.

Основные достоинства девайса:
1) Малое потребление
2) Высокое КПД (по сравнению с собратьями)
3) Сравнительно большой ток зарядки
4) Возможность работать от пониженного источника (первая версия работало от напряжения 9-16вольт)
5) Простота и компактность

Передающая часть устройства состоит из двух основных контуров. Каждый из них имеет диаметр 10 см, намотаны проводом 0,8мм. Первый контур (L1) состоит из 20 витков, второй из 35 витков того же провода. Контуры укладываются друг на друге и оформляются скотчем или изоляционной лентой.

Заранее нужно нумеровать выводы катушек, поскольку их нужно фазировать. Фазируют так - начало первой катушки соединяют с концом второй или наоборот, главное получить одну катушку с отводом.

Далее, подбираем сопротивление (если планируется запустить устройство с пониженного источника, то резистор может быть убран).
Желательно использовать подстроечный резистор 0...470 Ом, мощность резистора не очень важна (0,25-2 Ватт).

Как настроить? Просто! собираем для начала схему приемника. Подключаем питание (любой стабилизированный источник постоянного напряжения 4,5-9вольт). Настраиваем резистор так, чтобы ток покоя схемы не превышал 150мА.
Максимальный ток потребления схемы не более 600мА, согласитесь немного.
После подбора оптимального сопротивления, можно заменить переменник на постоянный резистор (0,25-1вт). Сопротивление базового ограничителя напрямую зависит от номинала входного напряжения.

В моем варианте транзистор не перегревался, но на всякий случай установите его на небольшой теплоотвод.
Устройство начинает работать от напряжения 1 вольт - еще одна особенность данной конструкции, но от такого напряжения он не будет заряжать мобильник, взамен его можно использовать в качестве преобразователя для питания маломощных устройств.

Транзистор - можно использовать буквально любой НЧ транзистор независимо от структуры. В схеме использован транзистор КТ818, с успехом можно заменить на 837, 816, 814 или 819, 805, 817, 815, только при использовании транзисторов обратной проводимости следует поменять полярность питания.

Приемник

Конструкция приемника до безобразия проста - контур, выпрямитель, стабилитрон и накопительный конденсатор. Диод нужен импульсный, желательно в СМД исполнении, поскольку вся схема будет находится в мобильном телефоне. В моем случае применен довольно мощный и распространенный диод Шоттки SS14. Такой диод способен работать на частотах до 1МГц, ток составляет до 1А!

Конденсатор не критичен, имеет емкость от 47 до 220 мкФ (больше конечно лучше, но места может не хватить). Напряжение конденсатора от 10 до 25 Вольт.
Стабилитрон - любой на напряжение 5-6 вольт (часто встречаются с напряжением 5.6 Вольт, к примеру - BZX84C5V6).

Контур приемника (L3) содержит 15 витков провода 0,3-0,7мм, мотается по спирали на внешней или внутренней стороне задней крышки телефона.

Схему можно собрать на компактной плате или же разместить в удобном месте при помощи навесного монтажа, но желательно залить монтаж резиновым клеем или силиконом.

В качестве подопытного телефона использовался сони Sony Ericsson K750, он полностью рабочий и был куплен специально для этих опытов (куплен на запчасти за 5$), затем уже был переделан подручный Nokia N95.
Устройство может заряжать мобильный телефон достаточно быстро, все зависит от общей мощности, в данном случае аккумулятор 1000мА полностью заряжается за 3 часа.

Ток во второй контур передается методом электромагнитной индукции, в данном случае это полностью безопасно, поскольку частота понижена, никаких вредных воздействий на человека нет.

Для того, чтобы установить приемный контур, мобильный телефон разбирают. К гнезду зарядки подключают промышленное зарядное устройство и находят полярность на контактах гнезда. Далее выводы приемника подключают к соответствующим выводам гнезда.

Контур можно прикрепить к задней крышке телефона при помощи эпоксидной смолы, силикона (крайне не желательно), супер клея (использовать только тогда, когда контур планируется закрепить с внешней стороны крышки).

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1 Биполярный транзистор

КТ818А

1 КТ837, КТ816, КТ814 В блокнот
VD1 Стабилитрон

BZX84C5V6

1 5-6 Вольт В блокнот
VD2 Диод Шоттки

SS14

1 В блокнот
С1 Электролитический конденсатор 10 мкФ 1

Представляю очередное устройство из серии «Не Брать!»
В комплект прилагается простенький кабель microUSB, который буду тестировать отдельно с кучей других шнурков.
Заказал эту зарядку ради любопытства, зная, что в таком компактном корпусе крайне сложно сделать надёжное и безопасное устройство сетевого питания 5В 1А. Реальность оказалась суровой…

Пришло в стандартном пакетике с пупыркой.
Корпус глянцевый, обёрнут защитной плёнкой.
Габаритные размеры с вилкой 65х34х14мм








Зарядка сразу оказалась нерабочей - хорошее начало…
Пришлось в начале устройство разбирать и ремонтировать, чтобы иметь возможность тестировать.
Разбирается очень просто - на защёлках самой вилки.
Дефект обнаружился сразу - отвалился один из проводков к вилке, пайка оказалась некачественной.


Вторая пайка не лучше


Сам монтаж платы выполнен нормально (для китайцев), пайка хорошая, плата отмыта.






Реальная схема устройства


Какие проблемы были обнаружены:
- Довольно слабое крепление вилки с корпусом. Не исключена возможность остаться ей оторванной в розетке.
- Отсутствие предохранителя по входу. Видимо те самые проводочки к вилке и являются защитой.
- Однополупериодный входной выпрямитель - неоправданная экономия на диодах.
- Малая ёмкость входного конденсатора (2,2мкФ/400В). Для работы однополупериодного выпрямителя ёмкость явно недостаточна, что приведёт к повышенным пульсациям напряжения на нём на частоте 50Гц и к уменьшению срока его службы.
- Отсутствие фильтров по входу и выходу. Невелика потеря для такого маленького и маломощного устройства.
- Простейшая схема преобразователя на одном слабеньком транзисторе MJE13001.
- Простой керамический конденсатор 1нФ/1кВ в помехоподавляющей цепи (показал отдельно на фото). Это грубое нарушение безопасности устройства. Конденсатор должен быть класса не менее Y2.
- Отсутствует демпферная цепь гашения выбросов обратного хода первичной обмотки трансформатора. Этот импульс частенько пробивает силовой ключевой элемент при его нагреве.
- Отсутствие защит от перегрева, от перегрузки, от короткого замыкания, от повышения выходного напряжения.
- Габаритная мощность трансформатора явно не тянет на 5Вт, а его очень миниатюрный размер ставит под сомнение наличие нормальной изоляции между обмотками.

Теперь тестирование.
Т.к. устройство изначально не является безопасным, подключение производил через дополнительный сетевой предохранитель. Если уж что случится - хотя-бы не обожжёт и не оставит без света.
Проверял без корпуса, чтобы можно было контролировать температуру элементов.
Выходное нгапряжение без нагрузки 5,25В
Потребляемая мощность без нагркзки менее 0,1Вт
Под нагрузкой 0,3А и менее зарядка работает вполне адекватно, напряжение держит нормально 5,25В, пульсации на выходе незначительные, ключевой транзистор греется в пределах нормы.
Под нагрузкой 0.4А напряжение начинает немного гулять в диапазоне 5,18В - 5,29В, пульсации на выходе 50Гц 75мВ, ключевой транзистор греется в пределах нормы.
Под нагрузкой 0,45А напряжение начинает заметно гулять в диапазоне 5,08В - 5,29В, пульсации на выходе 50Гц 85мВ, ключевой транзистор начинает потихоньку перегреваться (обжигает палец), трансформатор тёпленький.
Под нагрузкой 0,50А напряжение начинает сильно гулять в диапазоне 4,65В - 5,25В, пульсации на выходе 50Гц 200мВ, ключевой транзистор перегрет, трансформатор также довольно сильно нагрет.
Под нагрузкой 0,55А напряжение дико прыгает в диапазоне 4,20В - 5,20В, пульсации на выходе 50Гц 420мВ, ключевой транзистор перегрет, трансформатор также довольно сильно нагрет.
При ещё большем увеличении нагрузки, напряжение резко проседает до неприличных величин.

Выходит, данная зарядка реально может выдавать максимум 0,45А вместо заявленных 1А.

Далее, зарядка была собрана в корпус (вместе с предохранителем) и оставлена в работе на пару часов.
Как ни странно, зарядка не вышла из строя. Но это вовсе не означает, что она является надёжной - имея такую схемотехнику долго ей не протянуть…
В режиме короткого замыкания зарядка тихо умерла через 20 секунд после включения - произошёл обрыв ключевого транзистора Q1, резистора R2 и оптрона U1. Даже дополнительно установленный предохранитель не успел сгореть.

Для сравнения, покажу как выглядит внутри простейшая китайская зарядка 5В 2А от планшета, изготовленная с соблюдением минимально-допустимых норм безопасности.



Пользуясь случаем, сообщаю, что драйвер светильника из предыдущего обзора был успешно доработан, статья дополнена.

Зарядное устройство (ЗУ) типа BML 162089 R1A южно азиатского производства предназначено для зарядки аккумуляторов мобильных телефонов LG и имеет следующие характеристики: Uвход ~100…250 B, Iвход~160 мA, Uвых=8,5 В, Iвых=750 мA. Его внешний вид показан на рис.1.

Все радиоэлементы смонтированы на стекло пластиковом шасси НТ608 размерами 64×33 мм методом навесного монтажа без применения чип-элементов. Шасси размещено внутри пластмассового корпуса. По монтажной схеме шасси автором составлена принципиальная схема, показанная на рис.2.

Основой ЗУ является импульсный преобразователь. Принцип работы подобных импульсных источников питания прост: вначале переменное напряжение сети выпрямляется до постоянного напряжения 300 В, а далее с помощью генератора с мощным электронным ключом преобразуется в импульсы, которые через обмотки импульсного трансформатора наводятся во вторичной цепи, где выпрямляются до заданной величины (в зависимости от количества витков вторичной обмотки).

Импульсный преобразователь данного ЗУ состоит из однотактного преобразователя авто генераторного типа (транзистор VТ1),
подключенного к первичной сети. Переменное напряжение сети выпрямляется диодом VD4 (рис.2), сглаживается электролитическим конденсатором С1 и через обмотку 1-2трансформатора Т1 прикладывается к коллектору транзистора VТ1. Это же напряжение через резистор R2 подается на базу транзистора VT1, создавая положительное смещение.
Транзистор открывается, через первичную обмотку Т1 протекает ток, который наводит ЭДС в двух других обмотках трансформатора. Через обмотку положительной обратной связи 3-4 заряжается конденсатор С2, этот ток запирает транзистор VТ1. В его закрытом состоянии накопленная в трансформаторе энергия передается во вторичную цепь. В момент запирания транзистора VТ1 приложенное к нему напряжение может превышать напряжение сети в 3–4раза. Для уменьшения этого перенапряжения параллельно обмотке 1-2 включен резистор R1, выполняющий функцию демпфирующего элемента.
Более эффективно эту функцию могла бы выполнять цепочка, состоящая из последовательно соединенных резистора, конденсатора и диода, что сделало бы ЗУ более надежным. Цепь демпфирования в цепи базы транзистора выполнена на элементах VТ2, VD7, ZD5, R3, C2.
Вторичную цепь трансформатора образуют: обмотка 5-6, элементы VD8, C4, R8, R9 и транзистор VT3 с элементами обвязки (рис.2). Звено на транзисторе VТ3 с двухцветным светодиодом LED1 является особенностью этого ЗУ. Зеленое свечение светодиода
сигнализирует о том, что идет процесс зарядки аккумулятора, красное свечение обозначает конец зарядки.

Принцип работы этого звена следующий.

Светодиод LЕD1 включен в одну из диагоналей моста, плечи которого составляют резисторы R5, R6, R7 (все по 410 Ом) и сопротивление участка коллектор0эмиттер транзистора VT3 (рис.2). Последнее плечо является регулирующим элементом моста. Ко второй диагонали этого моста приложено напряжение вторичной цепи ЗУ. При равенстве сопротивлений всех четырех плеч (в данном случае 410 Ом) потенциалы точек «а” и «б” равны. Если же сопротивления плеч различаются, потенциалы точек «а” и «б” неодинаковы, и через светодиод протекает ток, вызывающий его свечение, цвет которого зависит от полярности приложенного напряжения.
В начале заряда разряженного аккумулятора ток заряда наибольший, падение напряжения на резисторе R8 максимально, pnp транзистор VТ3 открыт, в результате чего плюсовой потенциал точки «б” диагонали моста выше потенциала точки «а” (рис.2). При такой полярности напряжения светодиод светится красным цветом.
По мере заряда аккумулятора его напряжение постепенно повышается, ток через резистор R8 уменьшается, и сопротивление коллектор0эмиттер VТ3 увеличивается, что приводит к уменьшению разности потенциалов точек «а” и «б” и, следовательно, к уменьшению яркости свечения светодиода. Когда сопротивления VТ3 сравняется с сопротивлением резистора R6 (410 Ом), мост станет уравновешенным, потенциалы точек «а” и «б” станут одинаковыми, и светодиод перестанет
светиться.
При дальнейшей зарядке аккумулятора сопротивление участка коллектор-эмиттер VТ3 превысит 410 Ом, полярность напряжений в точках «а” и «б” диагонали моста поменяется, и светодиод станет светиться зеленым цветом, сигнализируя о том, что аккумулятор зарядился.
Если после включения в сеть на «холостом ходу” (при отсутствии аккумуляторов) светодиод вообще не светится (а должен светиться зеленым цветом), значит, ЗУ неисправно и требует ремонта. Для ремонта этого ЗУ Вам необходимо добраться до его шасси, «упрятанного” в пластмассовый корпус (рис.1). Обе (нижняя и верхняя) части этого корпуса «намертво” склеены между собой. Разъединить их можно, только разрезав ножовочным полотном пластмассовый корпус по линии склеивания (рис.1). Из разрезанного корпуса извлекают плату с навесными радиоэлементами.
Далее после осмотра обычным тестером проверяют исправность всех радиоэлементов
без их выпаивания. Один из транзисторов, VТ1 или VТ2, придется все0таки выпаять, поскольку при проверке тестером их проводимости они «мешают” друг другу. Выявленные неисправные элементы заменяют. Далее ЗУ включают в сеть и, если светодиод не светится зеленым цветом, замеряют напряжение +300 В на конденсаторе С1. При его отсутствии проверяют исправность резистора R сопротивлением 2,7 Ом. При этом необходимо строго соблюдать технику электробезопасности, так как высоковольтная часть ЗУ находится под фазным напряжением, которое опасно для жизни человека.
Транзистор VТ1 (6821) можно заменить транзисторами типов 2SC3457, 2SC4020, 2SC5027, а транзистор VТ2 (2SC9013) заменим 2SC1815. Недостатком этого ЗУ является разряд аккумулятора мобильного телефона через резистор R9 при пропадании сети во время зарядки (рис.2).
Данное зарядное устройство можно приспособить также для зарядки аналогичных аккумуляторов мобильных телефонов других фирм, для этого необходимо подобрать и запаять новый разъем, обеспечив правильную полярность.

Литература
Радiоаматор 2005_4

Приветствую радиолюбители!!!Перебирая старые платы наткнулся на парочку импульсных блоков питания от мобильных телефонов и захотелось их восстановить и заодно поведать вас о наиболее частых их поломках и устранения недостатков. На фото показаны две универсальные схемы таких зарядок, которые чаще всего встречаются:

В моем случае плата была подобна первой схеме, но без светодиода на выходе, который играет только роль индикатора присутствия напряжения на выходе блока. Прежде всего нужно разобраться с поломкой, ниже на фото я очертите детали какие чаще всего выходят из строя:

А проверять все необходимые детали будем с помощью обычного мультиметра DT9208A.В нем есть все необходимое для этого. Режим прозвонки диодов и переходов транзисторов, а также омметр и измеритель емкости конденсаторов до 200мкф.Этого набора функций более чем достаточно.

Во время проверки радиодеталей нужно знать цоколь всех деталей транзисторов и диодов особенно:


Теперь мы полностью готовы к проверке и ремонте импульсного блока питания.Начнем проверку блока на выявление видимых повреждения, в моем случае было два сгоревших резисторов с трещинами на корпусе. Более явных недостатков не выявил, в других блоках питания встречал вздутые конденсаторы на которые тоже надо обращать внимание в первую очередь!!! Некоторые детали можно проверить без выпайки, но если сомневаетесь то лучше выпаять и проверить отдельно от схемы. Пайку делайте аккуратно чтобы не повредить дорожки. Удобно в процессе пайки использовать третью руку:

После проверки и замены всех неисправных деталей первое включение делайте через лампочку, я для этого сделал специальный стенд:

Включаем через лампочку зарядное если все работает то закручиваем в корпус и радуемся проделанной работе, если же не работает ищем другие недостатки, также после пайки не забудьте смыть флюс, например спиртом. Если ничего не помогло и нервы на волоске выбросьте плату или розпаяйте и отберите живые детали в запас. Всем хорошего настроения.Также предлагаю посмотреть видео.

Большинство современных мобильных телефонов, смартфонов, планшетов и других носимых гаджетов, поддерживает зарядку через гнездо USB mini-USB или micro-USB. Правда до единого стандарта пока далеко и каждая фирма старается сделать распиновку по-своему. Наверное чтоб покупали зарядное именно у неё. Хорошо хоть сам ЮСБ штекер и гнездо сделали стандартным, а также напряжение питания 5 вольт. Так что имея любое зарядное-адаптер, можно теоретически зарядить любой смартфон. Как? и читайте далее.

Распиновка USB разъемов для Nokia, Philips, LG, Samsung, HTC

Бренды Nokia, Philips, LG, Samsung, HTC и многие другие телефоны распознают зарядное устройство только если контакты Data+ и Data- (2-й и 3-й) будут закорочены. Закоротить их можно в гнезде USB_AF зарядного устройства и спокойно заряжать свой телефон через стандартный дата-кабель.

Распиновка USB разъемов на штекере

Если зарядное устройство уже обладает выходным шнуром (вместо выходного гнезда), и вам нужно припаять к нему штекер mini-USB или micro-USB, то не нужно соединить 2 и 3 контакты в самом mini/micro USB. При этом плюс паяете на 1 контакт, а минус - на 5-й (последний).

Распиновка USB разъемов для Iphone

У Айфонов контакты Data+ (2) и Data- (3) должны соединяться с контактом GND (4) через резисторы 50 кОм, а с контактом +5V через резисторы 75 кОм.

Распиновка зарядного разъема Samsung Galaxy

Для заряда Самсунг Галакси в штекере USB micro-BM должен быть установлен резистор 200 кОм между 4 и 5 контактами и перемычка между 2 и 3 контактами.

Распиновка USB разъемов для навигатора Garmin

Для питания или заряда навигатора Garmin требуется особый дата-кабель. Просто для питания навигатора через кабель нужно в штекере mini-USB закоротить 4 и 5 контакты. Для подзаряда нужно соединить 4 и 5 контакты через резистор 18 кОм.

Схемы цоколёвки для зарядки планшетов

Практически любому планшетному компьютеру для заряда требуется большой ток — раза в 2 больше чем смартфону, и заряд через гнездо mini/micro-USB во многих планшетах просто не предусмотрен производителем. Ведь даже USB 3.0 не даст более 0,9 ампер. Поэтому ставится отдельное гнездо (часто круглого типа). Но и его можно адаптировать под мощный ЮСБ источник питания, если спаять вот такой переходник.

Распиновка зарядного гнезда планшета Samsung Galaxy Tab

Для правильного заряда планшета Samsung Galaxy Tab рекомендуют другую схему: два резистора: 33 кОм между +5 и перемычкой D-D+; 10 кОм между GND и перемычкой D-D+.

Распиновка разъёмов зарядных портов

Вот несколько схем напряжений на контактах USB с указанием номинала резисторов, позволяющих эти напряжения получить. Там, где указано сопротивление 200 Ом нужно ставить перемычку, сопротивление которой не должно превышать это значение.

Классификация портов Charger

  • SDP (Standard Downstream Ports) – обмен данными и зарядка, допускает ток до 0,5 A.
  • CDP (Charging Downstream Ports) – обмен данными и зарядка, допускает ток до 1,5 A; аппаратное опознавание типа порта (enumeration) производится до подключения гаджетом линий данных (D- и D+) к своему USB-приемопередатчику.
  • DCP (Dedicated Charging Ports) – только зарядка, допускает ток до 1,5 A.
  • ACA (Accessory Charger Adapter) – декларируется работа PD-OTG в режиме Host (с подключением к PD периферии – USB-Hub, мышка, клавиатура, HDD и с возможностью дополнительного питания), для некоторых устройств – с возможностью зарядки PD во время OTG-сессии.

Как переделать штекер своими руками

Теперь у вас есть схема распиновки всех популярных смартфонов и планшетов, так что если имеете навык работы с паяльником — не будет никаких проблем с переделкой любого стандартного USB-разъема на нужный вашему девайсу тип. Любая стандартная зарядка, которая основывается на использовании USB, предусматривает использование всего лишь двух проводов – это +5В и общий (минусовой) контакт.

Просто берёте любую зарядку-адаптер 220В/5В, от неё отрезаете ЮСБ коннектор. Отрезанный конец полностью освобождается от экрана, в то время как остальные четыре провода зачищаются и залуживаются. Теперь берем кабель с разъемом USB нужного типа, после чего также отрезаем от него лишнее и проводим ту же самую процедуру. Теперь остается просто спаять между собой провода согласно схемы, после чего соединение изолировать каждое отдельно. Полученное в итоге дело сверху заматывается изолентой или скотчем. Можно залить термоклеем — тоже нормальный вариант.

Бонус: все остальные разъёмы (гнёзда) для мобильных телефонов и их распиновка доступны в единой большой таблице — .